

National Association of Medical Examiners Position Paper

Postmortem Assessment of Suspected Head Trauma in Infant and Young Children

James Gill,* Elizabeth Bundock,† Kristinza Giese,‡ Cynthia Harris,§
 Heather Jarrell,|| Michelle Jorden,¶ Tara Mahar,# Jennifer Love,**
 Evan Matshes,†† Deanna Oleske,‡‡ and Gregory Vincent*

Abstract: The National Association of Medical Examiners (NAME) convened a panel to create a position paper for the investigation of pediatric deaths due to suspected inflicted head trauma. The certification of both the cause and manner of death is dependent upon an evaluation of all available data including information derived from the investigation, scene, postmortem examination, and ancillary studies. This paper provides the forensic pathologist with a comprehensive review for the postmortem examination of infants and toddlers who have died or have apparently died of inflicted head trauma. Specifically, this paper describes (1) procedures, (2) ancillary laboratory tests, and (3) forms of documentation that may be important in the investigation of these deaths. Some of these techniques are highly specialized and are performed at the discretion of the prosector. The evaluation and documentation of such fatalities involves the production of a reviewable, objective data set to support the multitude of inquiries that may follow from the public and the criminal justice system.

Key Words: forensic pathology, head trauma, infant, homicide, autopsy

(Am J Forensic Med Pathol 2025;00:000–000)

The National Association of Medical Examiners (NAME) was founded with “the dual purposes of fostering the professional growth of physician death investigators and disseminating professional and technical information vital to the continuing improvement of the medical investigation of violent, suspicious, and unusual deaths.”¹ One method of fulfilling this mission is the publication of autopsy standards² and position papers.^{3–5} NAME has previously published position papers on a

Received for publication October 29, 2025; accepted November 15, 2025.

From the *Connecticut Office of the Chief Medical Examiner, Farmington, CT; †Vermont Office of the Chief Medical Examiner, Burlington, VT; ‡District of Columbia Office of the Chief Medical Examiner, Washington, D.C.; §New York City Office of Chief Medical Examiner, New York City, NY; ||New Mexico Office of the Medical Investigator, Albuquerque, NM; ¶County of Santa Clara Office of the Medical Examiner-Coroner, Santa Clara, CA; #Erie County Medical Examiner, Buffalo, NY; **District of Columbia Department of Forensic Sciences, Washington, D.C.; ††NAAG Forensic PC, San Diego California; and ‡‡District 1 Medical Examiner's Office, Pensacola, FL.

Approved by the NAME Board of Directors on October 17, 2025.

The authors report no conflict of interest.

Reprints: James Gill, MD, Connecticut Office of the Chief Medical Examiner

11 Shuttle Rd, Farmington, CT 06032. E-mail: jgill@ocme.org.

Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.

ISSN: 0195-7910

DOI: 10.1097/PAF.0000000000001105

variety of topics including the investigation and certification of cocaine, heat-related, in-custody, pediatric environmental neglect, and opioid deaths.^{3–12}

Fatalities that may be the result of inflicted head trauma in the pediatric population are some of the most challenging investigations for a forensic pathologist, particularly when abnormalities are limited to the head and/or the circumstances of death are not clear.¹³ Complementary to a thorough medicolegal death investigation, the goal of the forensic autopsy is not only to aid in the determination of the cause and manner of death, but also to produce a data set that allows the original forensic pathologist (and others who follow) the best opportunity to independently review primary data and potentially answer reasonably foreseeable future questions.

Infants and young children die suddenly and unexpectedly for a myriad of reasons that span the spectrum from disease to inflicted injury.^{14,15} Infant/childhood deaths due to head trauma may have no history of injury and no external evidence of trauma. Therefore, unexpected pediatric deaths are carefully and thoroughly evaluated at all stages of investigation to ensure that the forensic pathologist recognizes, documents, and considers all relevant data so that they can appropriately make diagnoses that may be disease and/or trauma-related. As pathologic findings

TABLE 1. Broad Recommendations Specific to the Suspected Pediatric Head Injury Autopsy

1. Full-body external photographs with close-ups of specific findings and pertinent negative findings
2. A radiologic skeletal survey (not a so-called babygram)
3. PMCT findings reported within or accompanying the final autopsy report (when available)
4. Documentation of the scalp and intracranial hemorrhages
5. Documentation of the formalin-fixed brain, dura mater, and spinal cord (with the ability to consult with a board-certified neuropathologist if deemed necessary)
6. Documentation of the eyes, optic nerves, and ocular soft tissues (with the ability to consult with an ocular pathologist or board-certified neuropathologist if deemed necessary)
7. Evaluation of the anterior neck, posterior neck, back, and extremities
8. Consider evaluation of the intrinsic anatomy of the cervical spine (nerve roots, chondro-osseous structures)
9. Documentation of abnormal bone structures including suspected and diagnosed fractures
10. Review of medical records for correlation with the history and autopsy findings
11. Review of investigative circumstances and consider directly visiting the scene and/or performing a re-enactment

TABLE 2. Photographs*

As-is photographs of the anterior and posterior body upon opening of the transport bag, and before removing medical devices and cleaning
Clean photographs of the:
Face ("identification" photograph)
Anterior, posterior, right, and left views of the head and face
Extended anterior neck
Chest, abdomen, and back
Genitals and perianal region
Ventral and dorsal penis and the undersurface of the scrotum
Open and closed vulvar labia
Arms and legs including wrists, ankles, and hands
Soft tissue plane dissections (eg, torso, back, extremities, anterior and posterior neck)
Anterior, posterior, right, and left views of the surface of the reflected scalp and exposed pericranial surfaces
Exposed cranial surfaces after pericranial membrane and dura removal
Epidural, subdural, and subarachnoid compartments at autopsy
At least an as-is photograph of the brain inside the skull
Formalin-fixed photographs of:
The brain and spinal cord (overall and cut sections)
Cervical spine and/or cervical nerve roots as indicated
The eyes and optic nerves (overall and cut sections)
External and cut surfaces of retained osseous structures and internal organs (eg, heart/lungs) as indicated

*A case number should be visible in each photograph with a reference scale for major wounds.²⁵

emerge during the examination, evisceration, and prosecution, the necessity and/or utility of ancillary dissections and studies will become apparent, and their selection can be tailored by the forensic pathologist.

The following describes a progression of examinations and processes for the description and documentation of autopsy findings (Table 1). Although the focus of the paper is on the central nervous system, the detection and documentation of other disease processes and injuries involving the torso and extremities are also described. Although we describe the steps for the autopsy, we do not discuss the interpretation or usefulness of specific findings. Determination of the manner of death involves interpretation of the autopsy findings in the context of the circumstances of the death.

Autopsy protocols have been developed for cardiac, metabolic, and sudden infant deaths^{14,16-24} to promote both consistency and comprehensiveness in examinations which are designed to evaluate for a broad range of possible disease states. Similarly, this paper aims to describe autopsy procedures that produce a reviewable, objective data set for pediatric deaths that may have been due to head trauma. NAME has created general autopsy standards that are applicable to infants and children with apparent head trauma.²⁵ This position paper does not create new standards nor is it meant to expand or replace those pre-existing standards but rather to describe additional techniques, procedures, and other considerations that may be useful for these investigations. Each case is unique, and these procedures are not meant as a substitute for professional judgment in any one case. It is not meant to promulgate rigid criteria and inflexible rules that absolve forensic pathologists of the responsibility to think critically. Some of these techniques are highly specialized and are performed at the discretion of the prosector depending on the details

TABLE 3. Pediatric Radiologic Skeletal Survey

Three views of the skull
Anterior-posterior (AP)
Towne's (30% angle view of the mandibular condyles and the midfacial skeleton)
Lateral
Two views of the cervical spine
AP
Lateral
Two views of the trunk / torso
AP
Lateral
Two views of the ribs
Left posterior oblique (LPO)
Right posterior oblique (RPO)
Four views of the upper extremities
Left and right upper extremity (isolated view of humerus may be useful)
Left and right hand
Four views of the lower extremities
Left and right lower extremity (isolated view of femur may be useful)
Left and right foot

and context of the specific case. One cannot anticipate every variable and contingency that may exist in a specific case, which could reasonably affect the extent of an autopsy dissection. Therefore, its use is best tempered through the recognition of physical and investigative context, and the specifics of each case.

STEPS TAKEN BEFORE AUTOPSY

As described in the NAME autopsy standards, full-body photography and radiographic imaging are performed before the physical evaluation.²⁵ To avoid loss of evidence and/or contamination, it is recommended that trace evidence collection (including performance of a sexual evidence kit) is done before handling and washing the body in accordance with the requirements of the crime laboratory procedures.^{25,26}

Digital Photography

High-quality color photography is integral for documentation and facilitates case review by others (Table 2).^{25,27-31} External surfaces of the body are photographed with close-up photographs of specific findings and injuries (eg, abrasions, contusions, lacerations, etc.) with a ruled scale as per the NAME standards.²⁵ For certain injuries (eg, patterned injury), the American Board of Forensic Odontologists (ABFO) ruler photographed at 90 degrees from the camera lens can assist with later comparisons as the photographed scale is only relevant to those findings that are in the same plane as the ruler. Internal photographs typically include both pertinent positive and negative findings of tissue planes (eg, undersurface of the scalp, anterior chest and abdominal walls, back, extremities), the outer and inner surfaces of the calvarium, the epidural and subdural surfaces of the intracranial and spinal dura mater, the eyes (including the optic nerves), and any subcutaneous and/or skeletal anomalies including suspected physical injury. Alternative light source photography may enhance the physical assessment of bruises.³²

TABLE 4. Postmortem Pediatric CT-Scan Protocol

Whole body scan (vertex through extremities)
120 kVp
200 mAs
Pitch 0.5-0.8
Slice thickness 0.5 mm
Energy—single source
Dose modulation off
Adjust SFOV to patient size (small as possible)
Detector collimator 0.5 mm
Rotation time 1 s
Matrix 512×512
Kernel / filter / algorithm:
Soft tissue and bone (whole body)
Head (to include mandible)
Brain (brain coverage)
Lung (thoracic coverage)
Reformats:
Coronal
Sagittal
Volume rendering

Radiography

As per the NAME autopsy standards, a radiologic skeletal survey is performed in the evaluation of these deaths.^{25,33,34} Because acute and remote osseous anomalies and injuries can be missed during a routine autopsy, dedicated radiographs of the skeleton performed before autopsy may help to identify them.^{25,33} A second set of rib radiographs taken after the evisceration has been found useful by some to better visualize/document subtle fractures.³⁵ A pediatric skeletal survey is provided in Table 3. Because of limitations of body positioning, using this survey, rather than 1 (“babygram”) or 2 radiographs, improves the ability to diagnose subtle fractures and bone diseases. Forensic pathology fellowships include training in examining postmortem radiographs; however, consultation with a radiologist who has experience with pediatric postmortem radiographs may be appropriate in some circumstances.

Advanced Radiologic Techniques

Many infants and toddlers who present as a possible head trauma death will have been hospitalized before death, and many will have clinical radiographs, as well as computed tomography (CT) and magnetic resonance imaging (MRI) scans. Hospital radiologic data can be reviewed in conjunction with postmortem CT (PMCT) data (if any), along with the autopsy findings to confirm or refute radiologic observations made before death, and to better understand the evolution of disease and injury.

Research has shown that PMCT has utility in supplementing traditional autopsy in certain types of adult and non-forensic fetal and pediatric deaths.³⁶⁻³⁸ PMCT may add useful information to the detailed evaluation of a pediatric forensic death investigation. However, traditional (external and internal examination) autopsy is still the mainstay of pediatric forensic pathology.³⁹ High-resolution data collected through PMCT may also be used to produce 3D images and specimens to further document injuries and disease. PMCT is not considered suitable for supplanting full-body radiographic studies as it lacks the sensitivity and specificity for detection of many metabolic bone diseases (that may predispose to fracture), minute injuries (eg, classic metaphyseal lesions), and subclinical anomalies like

subperiosteal new bone formation.⁴⁰⁻⁴² The diagnostic sensitivity increases when both are performed as the sensitivity of certain injuries is lower for PMCT than for plain radiographs.⁴³⁻⁴⁵ Although concomitant use of PMCT scans and plain radiographs can be useful, only a minority of offices have CT scanners. Some forensic autopsy centers and offices have arranged access to CT scanners at local hospitals. The use of PMCT remains at the discretion of the forensic pathologist and subject to the availability of facilities and funding.⁴⁶ Protocols have been developed to provide optimal scan data in the postmortem setting (Table 4).⁴⁰ Some forensic pathologists have training/working knowledge to examine postmortem CT scans. Consultation with a pediatric radiologist who has experience with PMCT may be appropriate in some circumstances.

CORE AUTOPSY STEPS

External and Internal Examination

Depending on the age of the infant/young child, certain body measurements (eg, head circumference) in addition to length and weight may be important. A search for trace evidence and sexual assault evidence collection, if indicated (as mentioned above), is performed before washing the body. An external and internal examination is performed per the NAME Forensic Autopsy Performance Standards which are also followed when describing an injury (eg, type, location size, shape, pattern).²⁵ Per NAME standards, the forensic pathologist provides direct supervision of all technical processes and directly observes the removal of the skull cap and exposure of the brain to minimize the risk of misinterpreting artifactual hemorrhages as being of medicolegal relevance.²⁵

Autopsy Considerations by Body Region

As the autopsy progresses, the need for additional and/or more detailed examinations may be guided by findings relevant to the consideration of a diagnosis of inflicted head trauma.

I. Head

Scalp and Face

As per the NAME standards, the number, location, and size of hemorrhages of the external and undersurface of the scalp can be documented through a combination of photograph(s) and narrative description(s).²⁵ One is then able to correlate the sites of hemorrhage and medical intervention (eg, surgery, intracranial pressure monitoring catheter, electroencephalogram leads) and other processes unrelated to direct impact, such as areas of bleeding along sutural diastasis secondary to cerebral edema. This documentation assists the reviewer of the autopsy report and photographs to distinguish primary (traumatic) injury from secondary findings (eg, consequences of therapy, postmortem artifact, etc.).

If there is concern for facial injuries that are not apparent externally, or if further assessment of the extent of a known or apparent facial injury is needed, a formal face dissection can be performed that does not alter the appearance of the infant or child.⁴⁷ Advanced radiologic imaging also may be informative. The detection of otherwise unknown or underappreciated impact sites of the face may change the context of an infant death from one of non-impact to one with demonstrable impact. Intraoral examination may reveal frenulum, inner cheek, and tongue

injuries. Shaving hair allows for better evaluation and documentation of scalp injuries. Careful examination of the ears includes looking inside and behind the ears. An otoscope permits examination of the ear canal and tympanic membrane allowing for detection of fluid, extravasated blood or tissue, or exudates. Dissection of the scalp is performed to expose as much of the underlying calvarium as possible, paying particular attention to anomalies and/or injuries suggested by radiologic images obtained during life or pre-autopsy.

Skull

Per the NAME autopsy standards, documentation of the location, dimension, type (eg, linear, depressed, comminuted, diastatic) of fractures can be achieved through the narrative report, photography, and radiologic imaging.^{25,48,49} Some forensic pathologists supplement their reports with diagrams. In the absence of apparent calvarial fractures, pericranial membrane removal can discover subtle fractures (particularly those limited to the ectocranum, or those undergoing healing). The forensic pathologist is cautioned against reflexive stripping of the pericranial membrane in areas with obvious fractures as microscopic evaluation of known or suspected fractures is enhanced by evaluation of these tissues with respect to their anatomic location and relationship with the injured bone. The skull is opened using an oscillating saw as routine. Pathologists are cautioned against “flower petal” exposure of the brain opening along suture lines as this may cause disruption of the dura mater and its sinuses (see Meninges, below) and may interfere with the assessment of diastatic fractures. During fellowship, forensic pathologists receive training to evaluate skeletal trauma; consultation with a board-certified forensic anthropologist may be appropriate in some instances.^{35–37,50,51}

Both the calvarial and basilar dura mater are removed from the skull, and the exposed skull surfaces are photographed. High-resolution radiographic techniques (eg, pathology specimen radiology imaging system) are used by some to further clarify the nature of suspected fractures before microscopic studies. Portions of apparently fractured skull and contralateral apparently unfractured (“normal”) skull tissue may be retained for microscopic evaluation. In rare circumstances it may be appropriate to retain the entire calvarium.

Meninges

Examination of the cerebral dura is an important component of the autopsy. This includes describing the surfaces, the dural venous sinuses, and any corresponding pathology (eg, pus, hemorrhage, surgical defects, thromboses of the sinuses or bridging or cortical veins, etc.). Dural venous thrombosis is important to document and may be missed without careful examination.^{52–58} The types of hemorrhage include epidural (EDH), subdural (SDH), and subarachnoid (SAH). Their location (eg, convexity, base, interhemispheric, posterior fossa, etc.), distribution (eg, patchy, diffuse), size, color, and adherence to the dura can be documented through appropriate use of narrative descriptions and photography. The sizes of SDHs and EDHs can be documented by volume, weight, or 3-dimensional measurements (length, width, and thickness). The effects of any hemorrhage on the brain (eg, compression, herniation, shift) are recorded.

For any known or suspected head trauma cases, retention of the dura for further gross and microscopic

examination is recommended by various studies and experts.^{56,59,60} Although it is not always possible, it can be helpful for later examination to strip the cranial dura as one piece, with sinuses intact, to preserve as much orientation as possible. For later orientation, the dural arteries are on the epidural side and the middle meningeal artery is directed posteriorly. If this is not possible, the dural strips need to be oriented. The dura can be preserved as a flat piece with a method that minimizes curling and wrinkling during fixation. This can be accomplished by using traditional surgical pathology techniques such as pinning the dura mater flat against paraffin wax sheets/cork board or between 2 flat objects (like 2 stock jar lids) and then submerging it in formalin. If consultation with a neuropathologist is sought, the forensic pathologist documents and conveys findings apparent at autopsy such as liquid and non-adherent blood that may be dissolved or dislodged during fixation. To that end, the forensic pathologist also shares investigative information, medical data, autopsy findings (including photographs), clinical radiographic findings, and PMCT images, etc., as this information provides the neuropathologist with comprehensive information necessary to correlate observations and form well-informed diagnoses.

Microscopic sections of the dura help confirm and document gross findings and provide additional data that may be useful to assess the stage of healing.^{61–64} Microscopic examination of the dural sinus may help distinguish thrombus from postmortem congealed blood. Intradural hemorrhage also may be seen, especially in sections around the dural sinuses. Representative sections of the dura can be taken for histology either before fixation, after fixation, or a combination thereof depending on the findings. SDH and EDH sampling from central and peripheral areas and from areas of differing appearances can be helpful in further evaluation of the hemorrhages. For comparison to published descriptions of the temporal sequence of SDH healing, it is helpful for the report of microscopic findings to describe the cellular composition and organization.^{62–65} Many variables affect the process of SDH/EDH healing (eg, size of hematoma, source of blood, age, and health of the individual) resulting in a somewhat predictable but variable course.⁶¹ It is important to recognize that macrophages and iron deposits can be detected in the dura of infants and children without concurrent acute intracranial hemorrhages as the consequence of birth-related subdural hemorrhages.⁶⁶ Evaluation and demonstration of the evolving maturity of dural or leptomeningeal hemorrhages may be aided with the use of special stains and immunohistochemical techniques.⁶⁴

Brain

Neuropathologists recommend that the pediatric brain is formalin-fixed before dissection, which allows for thinner cut sections and better anatomical preservation given the incomplete myelination of pediatric brains.^{24,26,67} Although many different techniques exist to facilitate preservation,⁶⁷ most forensic pathologists will choose to fix the neurological tissues and dura mater in 10% or 20% formalin for 10 to 14 days before dissection. The brain is freely suspended in an adequate volume of formalin through the basilar artery or other vessels at the base. Another approach is to add sodium chloride to the formalin, which will allow the brain to float. Suspension of the brain within a bonnet or other autopsy material may introduce artifacts (eg, flattening of the cortical surface). Before evaluation of the preserved brain, it may be useful for the forensic pathologist to review

TABLE 5. Histologic Sampling of the Brain for Hypoxic-Ischemic Brain Injury

Watershed/border zone cortex (eg, frontoparietal region)
Deep gray structures (basal ganglia/thalamus)
Hippocampi (including subiculum)
Midbrain (inferior colliculus)
Pons
Cerebellum

antemortem (particularly admission) CT and MRI scan data that may document intracranial hemorrhage, effacement of subarachnoid cisterns, hypoxic-ischemic injury, and vascular thromboses.

Forensic pathologists are trained to diagnose and describe a broad spectrum of neuropathologic entities including disease and physical trauma. The approach to the forensic neuropathologic evaluation of the brain is to evaluate for disease and injury.⁶⁰ As some diseases may be subtle or mimic trauma, consultation with a board-certified neuropathologist who has forensic experience may be warranted, before or after dissection of the brain.⁶⁰ Retention of representative cortical regions, deep gray structures, brainstem, and cerebellum is usually sufficient.^{60,68}

Microscopic sections for suspected inflicted traumatic brain injury include evaluation of grossly identified pathology and sampling that allows for the assessment of a broad spectrum of neuropathologic findings including disease processes, hypoxic-ischemic brain changes, and axonopathy (including, when possible, that which is traumatic in origin).⁶⁰ Hypoxic-ischemic brain changes in infants/children have a characteristic geographic distribution, and those regions are included in the evaluation in addition to regions typically involved in adults.^{60,68,69} A list of locations for histologic sampling for hypoxic-ischemic brain injury is in Table 5. Diagnosis of diffuse traumatic axonal injury (dTAI) requires traumatic axonal injury in multiple locations including the corpus callosum, cerebral hemispheric white matter, and brainstem, distinct from the axonal changes typical of ischemia.⁷⁰⁻⁷² Histologic sampling for dTAI in infants and children includes routine H&E sections. If available, examination with amyloid precursor protein (APP) immunostaining may be useful in select instances.⁷²⁻⁷⁴ A list of locations for histologic sampling for dTAI is included in Table 6. Limited sampling has been demonstrated to preclude the diagnosis of dTAI; therefore, if traumatic axonal injury is present but insufficient to diagnose dTAI, additional (bilateral) histological sections are evaluated. Assessment of APP immunostaining patterns due to trauma and a variety of other processes has previously been reported, as well as caveats associated with the analysis.^{71,72,74-76} If special or immunohistochemical stains are needed in offices that do not have these services in-house, these services are available through commercial

pathology laboratories and academic centers. It should be noted that the commercially available APP immunostains have minute differences in antibody, clone, antigen retrieval techniques, and even the counterstain can alter the detection and interpretation of findings. Many experts recommend microscopic evaluation for disease processes to include examination of neocortex, deep gray structures, brainstem, and cerebellum. Histological sampling and use of special stains, however, may vary depending upon the clinical history and gross pathology at autopsy. Marked non-perfused brain changes (so-called “respirator brains”), for example, may dramatically impact brain integrity, and thus the process of dissection and sampling. However, careful evaluation of the brain is still possible, and may prove highly valuable particularly through microscopic analysis.

The Eyes

Much has been written about the documentation and location of hemorrhages and/or hemosiderin in the eyes of suspected pediatric head injury.⁷⁷⁻⁸² As vitreous fluid collection may create artifacts and thus disturb the ocular anatomy, the forensic pathologist will need to make a case-by-case decision about the necessity for eye dissection versus the probative value of vitreous humor collection for toxicological/chemical testing. Noninvasive techniques can be used to assess ocular pathology at autopsy. Monocular indirect ophthalmoscopy is a noninvasive and non-destructive technique to view the retina before autopsy.^{83,84} This technique may assist in deciding between different ancillary studies (ie, microscopic evaluation of the retina versus collection of vitreous humor for toxicological/chemical testing). Detailed descriptions of the techniques for removing the eyes at the time of autopsy have previously been published.⁸⁵⁻⁸⁷

After removal, the eyes, optic nerves, and attached soft tissues can be photographed both fresh and after fixed intact in formalin (ideally for at least 48 h). There are described techniques for sectioning the globe, however a single pupil-optic nerve section, made with as sharp a blade and as smooth a cut as possible, and without additional sectioning to create “calottes” will minimize disruption of the intraocular contents.⁸⁵ If, however, a concerning lesion is seen focally within the apex of one of the bisected segments, a calotte section may be advisable to best capture this finding histologically.

A gross description at the initial examination can document both intraocular and extraocular hemorrhage, retinal detachment or retinoschisis, pathologic retinal folds, and optic nerve edema. Common semi-quantitative descriptors of retinal hemorrhages are: none, a few, numerous, or too numerous to count. The distribution within the globe from posterior to periphery (ora serrata) can be documented in several ways. One option is to draw the findings on a fundal diagram. The bisected globe sections can also be photographed. The literature and other pathologists or agencies can assist on how to produce reviewable, high-quality photographs.^{88,89} Photography under a dissecting microscope provides detailed, high-magnification images; however, if a dissecting microscope is not available, a camera with an appropriate zoom lens may be used. If necessary, glare in the photograph can be reduced by immersing the bisected globe in 60% or 70% ethanol, or in normal saline if ethanol is unavailable. Absent such resources, a bright flashlight held at various angles can aid in the documentation of ocular findings. The use of diffused

TABLE 6. Histologic Sampling of Brain for Diffuse Traumatic Axonal Injury (dTAI)

Splenium of corpus callosum
Bilateral parasagittal white matter
Posterior limb of the internal capsule
Midbrain (decussation of superior cerebellar peduncle)
Pons (middle cerebellar peduncle)
Medulla (pyramids)

or polarized light can help to minimize reflections and enhance contrast. Because of the lack of contrast between dark hemorrhages and surrounding dark retina, and the difficulty of photographing into the concavity of an eye, ocular transillumination has been studied and shown to yield high contrast images of retinal findings.⁸⁹

To minimize compression artifacts, the bisected globe sections can be submitted in 2 separate deep (at least 1/2 inch) cassettes for processing. To examine a greater surface area of the retina, multiple hematoxylin and eosin-stained (H&E) upfront levels can be ordered. Many different special stains and immunostains have been studied for complementary use during postmortem eye examinations.⁹⁰ H&E stains remain the mainstay of evaluation. A Prussian blue stain (iron) can be used for the detection of hemosiderin in appropriate circumstances.^{91,92} Microscopic findings such as hemorrhage and/or hemosiderin (subdural, subarachnoid, orbital fat, scleral, retinal, vitreous) along with any other ocular pathology is included in a written report.²⁵ Other pathology descriptions such as which retinal layers are involved (subinternal limiting membrane, nerve fiber/ganglion cell layer, inner nuclear/inner plexiform layer, outer nuclear/outer plexiform layer, and subretinal), the locations of any pathology in the eye (eg, posterior pole, mid periphery, far periphery), and the extent of the hemorrhages also is included in the written report. Although such descriptors are by nature qualitative, examples include: focal for an isolated hemorrhage, multifocal for multiple discrete hemorrhages, and extensive for hemorrhage that has become confluent.

II. Neck, Spine, and Ribs

Infants and children who die of inflicted injuries may have injuries of their anterior and posterior necks. Certain types of injury mechanisms have been associated with physical injuries of connective tissue, chondro-osseous, and neural structures of the cervical spine. These injuries of the neck have been proposed to explain potential mechanisms of death. For these reasons, techniques have been described for the examination of the anterior and posterior neck and intrinsic spine structures/nerve roots.^{60,70,93–100}

As injury may involve different areas of the spinal cord in suspected pediatric head trauma deaths, it has been recommended that the entire length of the spinal cord (and its coverings) be examined.^{60,99,100} Regardless of the approach taken to dissect the spinal cord, the forensic pathologist evaluates the relationships between the spinal cord, proximal nerve roots, dura, and overlying soft tissue and chondro-osseous structures. After evisceration and neck dissections, the spinal cord can be approached through routine anterior or posterior techniques. The method of spinal cord removal depends upon historical, investigative, imaging, and/or autopsy findings that indicate forces may have been applied to the torso. Specialized options are available for the vertebral column when there are suspected flexion/extension injuries or rib or vertebral fractures:

Special Spinal Cord Assessment When There Are Suspected Flexion/Extension Injuries

If the prosector is concerned for intrinsic structural spinal/nerve root injury, there are a variety of techniques to facilitate these dissections.^{99–101} One method is an en-bloc dissection of the cervical osseous and neural structures with formalin fixation.¹⁰¹ This technique may help to address any antemortem MRI suggestions of cervical spine trauma (eg, nuchal and interspinous ligament edema and lacerations,

chondro-osseous and joint space disruptions, etc.) along with the anatomy of the cervical spinal cord and nerves (along the post-ganglionic length of the nerve).

Another technique is an *in situ* method that removes the spinal cord and attached ganglia without the surrounding bone and soft tissues.¹⁰⁰ Here, the laminae are cut and removed exposing the spinal cord *in situ*. Then the lateral aspects of the neural arches are removed by cutting the articulating facets and pedicles of the vertebrae. The freed sections of bone are removed exposing the ganglia *in situ*. Once the spinal cord and attached ganglia are exposed, they can be removed as a single block of tissue allowing the position of each ganglion to be maintained. *In situ* approach to the dissection of the cervical spine does disrupt the soft tissue and chondro-osseous structures, which may alter or prevent evaluation of hemorrhages along or within the minute nerve structures. Histologic evaluation of the spinal cord (and its coverings) may demonstrate microscopic hemorrhage or injury.

Special Spinal Assessment for Vertebral and Rib Fractures

After evisceration, anterior and posterior neck dissections, and back dissection, the cervical, thoracic, and lumbar portions of the spine can be freed from the body and removed in continuity with the proximal segments of each rib. After formalin fixation, any of a variety of decalcified or non-decalcified specimen approaches can assess the entire length of the spinal cord and its relationship to overlying/adjacent chondro-osseous and soft tissue structures.

For rib fractures, the spine can be freed from the body and removed in continuity with the rib cage. Rib fractures (including apparent rib fractures) and normal (“control”) contralateral ribs can be sampled histologically using a variety of standard techniques.

III. Trunk, Upper, and Lower Extremities

The NAME autopsy performance standards include procedures and descriptions for trunk injuries. A subcutaneous examination of the arms, legs, back, and buttocks may improve detection of occult subcutaneous and deep soft tissue hemorrhage.¹⁰² If metabolic bone disease is a reasonable consideration, portions of iliac crest, costochondral junction, or lumbar spine can be preserved in 40% ethanol for possible undecalcified bone histology assessment.^{103,104}

Of particular importance are the identification and description of rib (see above) and other skeletal fractures. In addition to radiographs, an *in situ* skeletal examination may further document or exclude injury. An *in situ* examination may include exposure of the shaft and epiphyseal cartilages of the ribs, clavicles, long bones, vertebrae, and scapulae.⁴⁹ Traumatized or abnormal structures can be removed for additional analysis including radiology and gross dissection with histological examination.^{105–107} When possible, a description of the stage of healing (ie, bone callus formation) is included in the autopsy report. The contralateral (ie, “normal”) bone can be used for “control” purposes, and to better understand the infant/toddler’s underlying normal bone physiology/anatomy. Because some osseous findings may be unusual normal anatomic variants mimicking trauma, consultation with a board-certified forensic anthropologist or pediatric radiologist may be useful. Rib fractures caused by attempts at cardiopulmonary resuscitation have been described in the pediatric population.^{108–110} Other

useful techniques and examinations include stripping the parietal pleural lining to identify subtle rib fractures and taking histologic sections of cutaneous/subcutaneous injuries (Prussian blue stain can identify microscopic hemosiderin).

Examination of the Internal Organs

Standardized approaches to the examination and dissection of the internal organs have been reported elsewhere and are discussed in the NAME autopsy performance standards.^{2,25} Of particular relevance is a detailed evaluation of the heart and lungs. As pulmonary pathology is a frequent complication of critical care therapy, and because pediatric lungs are particularly prone to collapse at autopsy (which subsequently imparts the false impression of hypercellularity, and therefore may complicate the evaluation for antecedent infectious states), pathologists may consider formalin perfusion of the lungs (or heart-lung block) before examination and histologic sampling.

Ancillary Studies

Depending upon the circumstances and autopsy findings, ancillary studies for infectious (eg, viral, bacterial cultures), hereditary, metabolic, or thrombophilic diseases may be indicated. Blood collected in a lavender top tube, which contains ethylenediaminetetraacetic acid (EDTA), is an appropriate specimen for genetic/molecular testing if needed. If blood cannot be obtained, other tissues (eg, heart, liver, spleen, skin) can be used for testing, so long as appropriate methodologies for storage and preservation are used (eg, an ultra-low temperature freezer, Roswell Park Memorial Institute (RPMI) medium used for cell culture, glutaraldehyde, RNAlater, etc.). A wide variety of molecular and genetic tests are available including whole genome/exome analysis and targeted studies for cardiomyopathies, channelopathies, thrombophilias, and bone weakening conditions. The ability to test for these disorders may be lost without appropriate foresight. As such, it is useful for forensic pathologists and their agencies to consider the preemptive development of specimen retention and storage plans that facilitate later unanticipated testing.¹¹¹

Medical Records

Review of medical records, including antemortem CT/MRI reports, may provide relevant clinical information and reveal issues that may be resolved during the postmortem examination. Neurologic status at presentation, the clinician's initial observations of any injuries, radiographical evidence of intracranial findings (eg, mass effect, swollen brain), intraoperative observations, ophthalmologic consultation findings, cerebral perfusion studies, venous sinus thrombosis studies, antemortem coagulopathy testing, etc., may provide additional useful information. In addition, antemortem pediatric medical records, if available, may provide a more inclusive picture of the child's overall health and pertinent family medical history.

Other Records and Circumstances

Many pediatric death investigations involve several agencies who conduct collaborative parallel investigations to determine what happened to the child. The forensic pathologist's focus is on cause and manner of death determination and if there is injury, how it occurred. Circumstances will differ from one death to another and as such, there may be a need to review information gathered

by other agencies concerned with child welfare, such as child protective services and law enforcement. Depending on the jurisdiction, child abuse protocols may exist, and these may help identify agencies and contacts who may be able to provide preliminary investigative information or indicate whether the child or family had prior contact with law enforcement or child protection agencies.

This exchange of information is mutually beneficial, as the forensic pathologist may be able to identify instances in which the physical findings at autopsy are either consistent or inconsistent with the given version(s) of events. As with any medical specialty, historical and circumstantial information is critical in the development of a cogent differential diagnosis, and its use should not be conflated with contextual bias.¹¹²

Organ and Tissue Donation

Organ and tissue donation is possible in pediatric homicides in which the child has been hospitalized.¹¹³ Forensic pathologists balance their willingness to facilitate donation against their mandate to advocate for the truth and provide transparency in each case.¹¹⁴ In some jurisdictions, a forensic pathologist may attend the donation procedure to document injuries and other pertinent findings subject to potential alteration. Before considering donation restrictions, the forensic pathologist considers the available medical records and preliminary information generated by any parallel investigations. For heart valve donation, the forensic pathologist may receive a cardiac pathology report or the option of examining the remaining heart tissue.^{115,116}

Organ procurement organizations and local medical examiners/coroners are encouraged to establish a professional relationship that includes generating and adhering to agreed-upon protocols. Medical examiners/coroners use investigative information to weigh their investigative duties and responsibilities with the family's desire to donate.¹¹³

CONCLUSIONS

The investigative value of each of the described studies is often unknown at the onset of the autopsy. Many procedures performed during an autopsy create irreversible changes to tissues and thus proactive documentation is critical. Ultimately, the forensic pathologist uses medical judgment on how to conduct each autopsy examination.

REFERENCES

1. National Association of Medical Examiner's Website. 2025. Available at: <https://www.thename.org/history-of-name>
2. Peterson GF, Clark SC, National Association of Medical E. Forensic autopsy performance standards. *Am J Forensic Med Pathol.* 2006;27(3):200–225.
3. Stephens BG, Jentzen JM, Karch S, et al. National Association of Medical Examiners position paper on the certification of cocaine-related deaths. *Am J Forensic Med Pathol.* 2004;25(1):11–13.
4. Donoghue ER, Graham MA, Jentzen JM, et al. Criteria for the diagnosis of heat-related deaths: National Association of Medical Examiners. Position paper. National Association of Medical Examiners Ad Hoc Committee on the Definition of Heat-Related Fatalities. *Am J Forensic Med Pathol.* 1997;18(1):11–14.
5. Davis GG, Cadwallader AB, Fligner CL, et al. Position paper: Recommendations for the investigation, diagnosis, and certification of deaths related to opioid and other drugs. *Am J Forensic Med Pathol.* 2020;41(3):152–159.

6. Case ME, Graham MA, Handy TC, et al. Position paper on fatal abusive head injuries in infants and young children. National Association of Medical Examiners Ad Hoc Committee on Shaken Baby Syndrome. *Am J Forensic Med Pathol*. 2001;22(2):112–122.
7. Middleton OL, Atherton DS, Bundock EA, et al. National Association of Medical Examiners Position Paper: Recommendations for the investigation and certification of deaths in people with epilepsy. *Acad Forensic Pathol*. 2018;8(1):119–135.
8. Mitchell RA, Diaz F, Goldfogel GA, et al. National Association of Medical Examiners Position Paper: Recommendations for the definition, investigation, postmortem examination, and reporting of deaths in custody. *Acad Forensic Pathol*. 2017;7(4):604–618.
9. Pinckard JK, Geiselhart RJ, Moffatt E, et al. National Association of Medical Examiners Position Paper: Medical examiner release of organs and tissues for transplantation. *Acad Forensic Pathol*. 2014;4(4):497–504.
10. Aiken SS, Nashelsky M. National Association of Medical Examiners Position Paper: Second Autopsies. 2023. <https://www.thename.org/name-public-position-papers>
11. Utley S, Lewis A, Arunkumar P, et al. National Association of Medical Examiners Position Paper: Disaster Related Deaths. 2023. <https://www.thename.org/name-public-position-papers>
12. Melinek J, Thomas LC, Oliver WR, et al. National Association of Medical Examiners Position Paper: Medical examiner, coroner, and forensic pathologist independence. *Acad Forensic Pathol*. 2013;3(1):93–98.
13. Narang SK, Haney S, Duhaime AC, et al. Abusive head trauma in infants and children: Technical report. *Pediatrics*. 2025;155(3):e2024070457.
14. Pinneri K, Matsches EW. Recommendations for the autopsy of an infant who has died suddenly and unexpectedly. *Acad Forensic Pathol*. 2017;7(2):171–181.
15. Palusci VJ, Kay AJ, Batra E, et al. Identifying child abuse fatalities during infancy. *Pediatrics*. 2019;144(3):e20192076.
16. Basso C, Burke M, Fornes P, et al. Guidelines for autopsy investigation of sudden cardiac death. *Virchows Arch*. 2008;452(1):11–18.
17. Lee AH, Gallagher PJ. Post-mortem examination after cardiac surgery. *Histopathology*. 1998;33(5):399–405.
18. Rinaldo P, Yoon HR, Yu C, et al. Sudden and unexpected neonatal death: a protocol for the postmortem diagnosis of fatty acid oxidation disorders. *Semin Perinatol*. 1999;23(2):204–210.
19. Byard RW, Krous H, 2001. International standardized autopsy protocol for sudden unexpected infant death, In: Byard RW, Krous H, ed. *Sudden Infant Death Syndrome Problems, Progress, and Possibilities*. London: Arnold. 319#x2013;333.
20. Sadler DW. The value of a thorough protocol in the investigation of sudden infant deaths. *J Clin Pathol*. 1998;51(9):689–694.
21. Bove KE. Practice guidelines for autopsy pathology: the perinatal and pediatric autopsy. Autopsy Committee of the College of American Pathologists. *Arch Pathol Lab Med*. 1997;121(4):368–376.
22. Ackerman MJ, Tester DJ, Driscoll DJ. Molecular autopsy of sudden unexplained death in the young. *Am J Forensic Med Pathol*. 2001;22(2):105–111.
23. Bundock E, Corey T. *National Association of Medical Examiners Panel on Sudden Unexpected Death in Pediatrics: Unexplained Pediatric Deaths: Investigation, Certification, and Family Needs San Diego*. Academic Forensic Pathology International; 2019.
24. Weber M, Sebire N. Postmortem investigation of sudden unexpected death in infancy: current issues and autopsy protocol. *Diagnostic Histopathology*. 2009;15(11):510–523.
25. Peterson GF, Clark SC. *Forensic Autopsy Performance Standards*. National Association of Medical Examiners; 2023.
26. Spitz WU, Diaz FJ. *Spitz and Fisher's Medicolegal Investigation of Death*. Springfield: Charles C Thomas; 2020.
27. Oliver WR. Considerations for gross autopsy photography. *Acad Forensic Pathol*. 2011;1(1):52–81.
28. Scondoni R, Fedeli P, Cannovo N, et al. The “Magnificent Seven Errors” in Forensic Autopsy Practice: The Italian Context. *Acad Forensic Pathol*. 2021;11(4):208–214.
29. Belanger AJ, Lopes AE, Sinard JH. Implementation of a practical digital imaging system for routine gross photography in an autopsy environment. *Arch Pathol Lab Med*. 2000;124(1):160–165.
30. Santucci G, Catanese CA, Levy B. 2017. Forensic photography, Catanes, C. ed. *Color Atlas of Forensic Medicine and Pathology*. CRC Press. 603#x2013;626
31. Pritt B, Gibson P, Cooper K, et al. What is a picture worth? Digital imaging applications in autopsy reports. *Arch Pathol Lab Med*. 2004;128:1247–1250.
32. Scafide KN, Sheridan DJ, Downing NR, et al. Detection of inflicted bruises by alternate light: results of a randomized controlled trial. *J Forensic Sci*. 2020;65(4):1191–1198.
33. McGraw EP, Pless JE, Pennington DJ, et al. Postmortem radiography after unexpected death in neonates, infants, and children: should imaging be routine? *AJR Am J Roentgenol*. 2002;178(6):1517–1521.
34. Adamsbaum C, Mejean N, Merzoug V, et al. How to explore and report children with suspected non-accidental trauma. *Pediatr Radiol*. 2010;40(6):932–938.
35. Chapman E, Maloney K, Mahar T. *Unexpected Antemortem and Perimortem Rib Fractures in Infants Without Other Significant Injuries (A145)*. Denver, CO: American Academy of Forensic Sciences; 2024.
36. Leth PM. The use of CT scanning in forensic autopsy. *Forensic Sci Med Pathol*. 2007;3(1):65–69.
37. Bedford PJ. Routine CT scan combined with preliminary examination as a new method in determining the need for autopsy. *Forensic Sci Med Pathol*. 2012;8(4):390–394.
38. Roberts ISD, Benamore RE, Benbow EW, et al. Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. *The Lancet*. 2012;379(9811):136–142.
39. Molina DK, Nichols JJ, Dimaio VJ. The sensitivity of computed tomography (CT) scans in detecting trauma: are CT scans reliable enough for courtroom testimony? *J Trauma*. 2007;63(3):625–629.
40. Shelmerdine SC, Davendralingam N, Langan D, et al. Post-mortem skeletal survey (PMSS) versus post-mortem computed tomography (PMCT) for the detection of corner metaphyseal lesions (CML) in children. *Eur Radiol*. 2024;34(9):5561–5569.
41. Gould SW, Harty MP, Givler NE, et al. Pediatric postmortem computed tomography: initial experience at a children's hospital in the United States. *Pediatr Radiol*. 2019;49(9):1113–1129.
42. Shelmerdine SC, Gerrard CY, Rao P, et al. Joint European Society of Paediatric Radiology (ESPR) and International Society for Forensic Radiology and Imaging (ISFRI) guidelines: paediatric postmortem computed tomography imaging protocol. *Pediatr Radiol*. 2019;49(5):694–701.
43. Shelmerdine SC, Arthurs OJ. Post-mortem perinatal imaging: what is the evidence? *Br J Radiol*. 2023;96(1147):20211078.
44. Edwards H, Shelmerdine SC, Arthurs OJ. Forensic post-mortem CT in children. *Clin Radiol*. 2023;78(11):839–847.
45. Shelmerdine SC, Simcock IC, Hutchinson JC, et al. Post-mortem microfocus computed tomography for noninvasive autopsies: experience in > 250 human fetuses. *Am J Obstet Gynecol*. 2021;224(1):103 e101–103 e115.
46. Nolte KB, Mlady G, Zumwalt RE, et al. Postmortem X-ray computed tomography (CT) and forensic autopsy: a review of the utility, the challenges and the future implications. *Acad Forensic Pathol*. 2011;1(1):40–51.
47. Collins K. *Special Autopsy Techniques*. Northfield, Illinois: College of American Pathologists; 2010.
48. Mulroy MH, Loyd AM, Frush DP, et al. Evaluation of pediatric skull fracture imaging techniques. *Forensic Sci Int*. 2012;214(1-3):167–172.
49. Love JC, Sanchez LA. Recognition of skeletal fractures in infants: an autopsy technique. *J Forensic Sci*. 2009;54(6):1443–1446.

50. Crowder CM, Wiersema JM, Adams BJ, et al. The Utility of Forensic Anthropology in the Medical Examiner's Office. *Acad Forensic Pathol.* 2016;6(3):349–360.

51. Love JC. The value of anthropology in medicolegal death investigation of pediatric nonaccidental injury. *Acad Forensic Pathol.* 2016;6(3):478–485.

52. Stiefel D, Eich G, Sacher P. Posttraumatic dural sinus thrombosis in children. *Eur J Pediatr Surg.* 2000;10(1):41–44.

53. Bokhari R, You E, Bakhaidar M, et al. Dural venous sinus thrombosis in patients presenting with blunt traumatic brain injuries and skull fractures: a systematic review and meta-analysis. *World Neurosurg.* 2020;142:495–505 e493.

54. Krasnokutsky MV. Cerebral venous thrombosis: a potential mimic of primary traumatic brain injury in infants. *AJR Am J Roentgenol.* 2011;197(3):W503–W507.

55. Dlamini N, Billinghurst L, Kirkham FJ. Cerebral venous sinus (sinovenous) thrombosis in children. *Neurosurg Clin N Am.* 2010;21(3):511–527.

56. Kinal ME. Traumatic thrombosis of dural venous sinuses in closed head injuries. *J of Neurosurg.* 1967;27(2):142–145.

57. Pongmoragot J, Saposnik G. Intracerebral hemorrhage from cerebral venous thrombosis. *Curr Atheroscler Rep.* 2012;14(4):382–389.

58. Pais-Cunha I, Almeida AI, Curval AR, et al. Cerebral venous thrombosis in pediatric age: risk factors and prognosis. *Neuropediatrics.* 2024;55(3):183–190.

59. Croft PR, Reichard RR. Microscopic examination of grossly unremarkable pediatric dura mater. *Am J Forensic Med Pathol.* 2009;30(1):10–13.

60. Folkerth RD, Nunez J, Georgievskaya Z, et al. Neuropathologic examination in sudden unexpected deaths in infancy and childhood: recommendations for highest diagnostic yield and cost-effectiveness in forensic settings. *Acad Forensic Pathol.* 2017;7(2):182–199.

61. Hirsch CS, Armbrustmacher V. Trauma of the nervous system, Spitz WU. *Spitz and Fisher's Medicolegal Investigation of Death.* Springfield, IL: Charles C Thomas; 2006:994–1077.

62. Aromatario M, Torsello A, D'Errico S, et al. Traumatic epidural and subdural hematoma: epidemiology, outcome, and dating. *Medicina (Kaunas).* 2021;57(2):125.

63. Delteil C, Humez S, Boucekine M, et al. Histological dating of subdural hematoma in infants. *Int J Legal Med.* 2019;133(2):539–546.

64. van den Bos D, Zomer S, Kubat B. Dare to date: age estimation of subdural hematomas, literature, and case analysis. *Int J Legal Med.* 2014;128(4):631–640.

65. Itabashi H, Andrews J, Tomiyasu U, et al. Dating/aging of common lesions in neuropathology. In: Itabashi HH, Andrews JM, Tomiyasu U, Erlich SS, Sathyavagiswaran L, eds. *Forensic Neuropathology Amsterdam, the Netherlands.* Elsevier; 2007:49–122.

66. Rooks VJ, Eaton JP, Ruess L, et al. Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants. *AJNR Am J Neuroradiol.* 2008;29(6):1082–1089.

67. Nardi L, Schmeisser MJ, Schumann S. Fixation and staining methods for macroscopical investigation of the brain. *Front Neuroanat.* 2023;17:1200196.

68. McGuone D, Crandall LG, Devinsky O. Sudden unexplained death in childhood: a neuropathology review. *Front Neurol.* 2020;11:582051.

69. Dolinak D, Reichard R. An overview of inflicted head injury in infants and young children, with a review of β -amyloid precursor protein immunohistochemistry. *Arch Pathol Lab Med.* 2006;130(5):712–717.

70. Shannon P, Smith CR, Deck J, et al. Axonal injury and the neuropathology of shaken baby syndrome. *Acta Neuropathol.* 1998;95(6):625–631.

71. Reichard RR, White-III CL, Hladik CL, et al. Beta-amyloid precursor protein staining in nonhomicidal pediatric medicolegal autopsies. *J Neuropathol Exp Neurol.* 2003;62(3):237–247.

72. Reichard RR, Smith C, Graham DI. The significance of beta-APP immunoreactivity in forensic practice. *Neuropathol Appl Neurobiol.* 2005;31(3):304–313.

73. Hortobagyi T, Wise S, Hunt N, et al. Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. *Neuropathol Appl Neurobiol.* 2007;33(2):226–237.

74. Graham DI, Smith C, Reichard R, et al. Trials and tribulations of using beta-amyloid precursor protein immunohistochemistry to evaluate traumatic brain injury in adults. *Forensic Sci Int.* 2004;146(2-3):89–96.

75. Reichard RR, White CL 3rd, Hladik CL, et al. Beta-amyloid precursor protein staining of nonaccidental central nervous system injury in pediatric autopsies. *J Neurotrauma.* 2003;20(4):347–355.

76. Geddes JF, Vowles GH, Beer TW, et al. The diagnosis of diffuse axonal injury: implications for forensic practice. *Neuropathol Appl Neurobiol.* 1997;23(4):339–347.

77. Hansen JB, Killough EF, Moffatt ME, et al. Retinal hemorrhages: abusive head trauma or not? *Pediatr Emerg Care.* 2018;34(9):665–670.

78. Binenbaum G, Forbes BJ. The eye in child abuse: key points on retinal hemorrhages and abusive head trauma. *Pediatr Radiol.* 2014;44(Suppl 4):571–577.

79. Watts P, Maguire S, Kwok T, et al. Newborn retinal hemorrhages: a systematic review. *J AAPOS.* 2013;17(1):70–78.

80. Pham H, Enzenauer RW, Elder JE, et al. Retinal hemorrhage after cardiopulmonary resuscitation with chest compressions. *Am J Forensic Med Pathol.* 2013;34(2):122–124.

81. Binenbaum G, Rogers DL, Forbes BJ, et al. Patterns of retinal hemorrhage associated with increased intracranial pressure in children. *Pediatrics.* 2013;132(2):e430–e434.

82. Agrawal S, Peters MJ, Adams GG, et al. Prevalence of retinal hemorrhages in critically ill children. *Pediatrics.* 2012;129(6):e1388–e1396.

83. Lantz PE, Adams GG. Postmortem monocular indirect ophthalmoscopy. *J Forensic Sci.* 2005;50(6):1450–1452.

84. Ducloyer JB, Scherpereel C, Goronflot T, et al. Assessing retinal hemorrhages with non-invasive post-mortem fundus photographs in sudden unexpected death in infancy. *Int J Legal Med.* 2023;137(3):913–923.

85. Gilliland MG, Levin AV, Enzenauer RW, et al. Guidelines for postmortem protocol for ocular investigation of sudden unexplained infant death and suspected physical child abuse. *Am J Forensic Med Pathol.* 2007;28(4):323–329.

86. Wignanski-Jaffe T, Morad Y, Levin AV. Pathology of retinal hemorrhage in abusive head trauma. *Forensic Sci Med Pathol.* 2009;5(4):291–297.

87. Gilliland MG, Folberg R. Retinal hemorrhages: replicating the clinician's view of the eye. *Forensic Sci Int.* 1992;56(1):77–80.

88. Macher J, Porter RS, Levin AV. Ophthalmic imaging in abusive head trauma. *Child Abuse Negl.* 2023;139:106106.

89. Nolte KB. Transillumination enhances photographs of retinal hemorrhages. *J Forensic Sci.* 1997;42(5):935–936.

90. Di Fazio N, Delogu G, Morena D, et al. New insights into the diagnosis and age determination of retinal hemorrhages from abusive head trauma: a systematic Review. *Diagnostics (Basel).* 2023;13(10):1722.

91. Bais B, Karst WA, Kubat B, et al. Persistent retinal iron in abusive head trauma. *J Forensic Sci.* 2016;61(6):1693–1696.

92. Delteil C, Kolopp M, Capuani C, et al. Histological dating of subarachnoid hemorrhage and retinal hemorrhage in infants. *Forensic Sci Int.* 2019;303:109952.

93. Matshee EW, Evans RM, Pinckard JK, et al. Shaken infants die of neck trauma, not brain trauma. *Acad For Path.* 2011;1(1):82–91.

94. Geddes JF, Vowles GH, Hackshaw AK, et al. Neuropathology of inflicted head injury in children. II. Microscopic brain injury in infants. *Brain.* 2001;124(Pt 7):1299–1306.

95. Hadley MN, Sonntag VK, Rekate HL, et al. The infant whiplash-shake injury syndrome: a clinical and pathological study. *Neurosurgery.* 1989;24(4):536–540.

96. Geddes JF, Hackshaw AK, Vowles GH, et al. Neuropathology of inflicted head injury in children. I. Patterns of brain damage. *Brain*. 2001;124(Pt 7):1290–1298.

97. Adams VI. Autopsy technique for neck examination. I. Anterior and lateral compartments and tongue. *Pathol Annu*. 1990;25 Pt 2(2):331–349.

98. Adams V. Autopsy technique for neck examination. II. Vertebral Column and Posterior Compartment. *Pathol Annual*. 1990;26(Pt 2):211–226.

99. Judkins AR, Hood IG, Mirchandani HG, et al. Technical communication: rationale and technique for examination of nervous system in suspected infant victims of abuse. *Am J Forensic Med Pathol*. 2004;25(1):29–32.

100. Peterson JE, Love JC, Pinto DC, et al. A novel method for removing a spinal cord with attached cervical ganglia from a pediatric decedent. *J Forensic Sci*. 2016;61(1):241–244.

101. Matsches EW, Evans RM, Pinckard JK, et al. Shaken infants die of neck trauma, not of brain trauma. *Acad Forensic Pathol*. 2011;1(1):82–91.

102. Spitz W, Spitz D. Investigation of Deaths in Childhood, Spitz W, Spitz D. *Spitz and Fisher's Medicolegal Investigation of Death*. Springfield: Charles C Thomas; 2006:1325.

103. El Demellawy D, Davila J, Shaw A, et al. Brief review on metabolic bone disease. *Acad Forensic Pathol*. 2018;8(3):611–640.

104. Testini V, Eusebi L, Tupputi U, et al. Metabolic bone diseases in the pediatric population. *Semin Musculoskelet Radiol*. 2021;25(1):94–104.

105. Love JC, Derrick SM, Wiersema JW. *Skeletal Atlas of Child Abuse*. New York: Humana Press; 2011.

106. Kleinman PK, Marks SC, Blackbourne B. The metaphyseal lesion in abused infants: a radiologic-histopathologic study. *AJR Am J Roentgenol*. 1986;146(5):895–905.

107. Lonergan GJ, Baker AM, Morey MK, et al. From the archives of the AFIP. Child abuse: radiologic-pathologic correlation. *Radiographics*. 2003;23(4):811–845.

108. Dolinak D. Rib fractures in infants due to cardiopulmonary resuscitation efforts. *Am J Forensic Med Pathol*. 2007;28(2):107–110.

109. Matsches EW, Lew EO. Two-handed cardiopulmonary resuscitation can cause rib fractures in infants. *Am J Forensic Med Pathol*. 2010;31(4):303–307.

110. Clouse JR, Lantz PE. Posterior Rib Fractures in infants associated with cardiopulmonary resuscitation (abstract G12). *60th American Academy of Forensic Science Annual Meeting*. Washington, D.C.; 2008.

111. Cunningham KS. The promise of molecular autopsy in forensic pathology practice. *Acad Forensic Pathol*. 2017;7(4):551–566.

112. Oliver WR, Fudenberg J, Howe JA, et al. Cognitive bias in medicolegal death investigation. *Acad Forensic Pathol*. 2015;5(4):548–560.

113. Pinckard JK, Wetli CV, Graham MA, et al. National Association of Medical Examiners position paper on the medical examiner release of organs and tissues for transplantation. *Am J Forensic Med Pathol*. 2007;28(3):202–207.

114. Jason D. The role of the medical examiner/coroner in organ and tissue procurement for transplantation. *Am J Forensic Med Pathol*. 1994;15(3):192–202.

115. Pinckard JK, Graham MA. Heart valve tissue donation does not preclude the diagnosis of clinically significant pediatric cardiac abnormalities. *Am J Forensic Med Pathol*. 2003;24(3):248–253.

116. Mackey-Bojack S, Roe S, Titus JL. Review of pathologic findings in remnant hearts following valve donation. *J Forensic Sci*. 2007;52(3):692–697.